Топ-100
Сделать домашней страницей Добавить в избранное





Главная Обзоры СМИ Статьи


Другие вертушки


11 марта 2021 года Василий Сычёв, N+1


Недавно французская компания Conseil & Technique запатентовала линзообразные роторы, которые предлагает ставить на аэротакси вместо привычных лопастных винтов, удерживающих в воздухе вертолеты. Французский проект — не единственная попытка доработать вертолетный винт: воздушный транспорт продолжает развиваться, и разработчики постоянно пытаются либо обойти ограничения классических лопастных винтов, либо «проапгрейдить» его, чтобы оснащенный им аппарат мог решать какие-то специфические задачи. Рассказываем, зачем нужны лопасти в виде сабель и насколько удачна идея установить на их концах реактивные сопла.

Напасти лопастей

Традиционно несущие винты винтокрылых летательных аппаратов — вертолетов, автожиров, конвертопланов — лопастные. Раскрученные лопасти захватывают воздух и отбрасывают его вниз, создавая над собой зону пониженного давления, а под собой — повышенного. Таким образом создается подъемная сила для полета.

Несущие винты также оснащаются автоматами перекоса, которые позволяют менять угол атаки лопастей в зависимости от их положения в пространстве. Благодаря этому можно калибровать подъемную силу несущего винта внутри окружности, описываемой лопастями. Так на винте формируется движущая сила, которая обеспечивает горизонтальный полет винтокрылой технике. Чтобы сдвинуть вертолет вперед, вам нужно увеличить подъемную силу винта сзади и уменьшить спереди, и наоборот.

На вертолетах, в отличие от винтовых самолетов, несущие винты вращаются с постоянной частотой, а скорость и высота полета меняются за счет изменение угла установки лопастей. Это меняет сопротивление винта, и чтобы поддерживать частоту его вращения, нужно регулировать подаваемую двигателем мощность. В целом увеличение угла установки лопастей приводит к росту подъемной силы и скорости движения аппарата, однако происходить бесконечно это не может.

У лопастных винтов есть несколько серьезных ограничений, которые и пытаются обойти разработчики альтернативных конструкций. Одно из них — одновременные срыв потока, волновой кризис и обратное обтекание. Дело в том, что во время горизонтального полета лопасти воздушного винта с одной стороны движутся навстречу воздушному потоку, а с другой — по его направлению. В результате этого подъемная сила на правом и левом секторах винта не равны.

В зависимости от конструкции вертолета в горизонтальном полете может случиться так, что линейная скорость внешней части лопастей во встречном воздушном потоке будет околозвуковой, а в исключительных случаях и сверхзвуковой. Это может приводить к резкому падению подъемной силы на этих участках лопастей и неконтролируемым вибрациям.

Одновременно на внешних частях лопастей, движущихся против направления горизонтального полета, будет происходить срыв воздушного потока, то есть увеличение турбулентного течения на них. Это также приводит к снижению подъемной силы и вибрациям (флаттеру). В некоторых случаях они могут приводит к разрушению винта или, если вертолет выполнен по соосной схеме, к перехлесту лопастей двух вращающихся в противоположных направлениях винтов.

Наконец, внутренняя часть лопастей несущего винта, расположенная ближе к валу и движущаяся по направлению воздушного потока, будет испытывать обратное обтекание. Это будет происходить из-за скорости воздушного потока, превышающей скорость лопасти. В результате воздушный поток будет попадать на лопасть с противоположной стороны, создавая обратную подъемную силу (грубо говоря, в этой части винт перестает тянуть вверх и начинает давить вниз).   

Помимо этих трех факторов, несущие винты вертолетной техники могут сталкиваться еще с одним опасным явлением — вихревым кольцом. Такое явление может возникать вблизи земли, например, при взлете или посадке. В этом случае воздух, отбрасываемый воздушным винтом вниз, отражается от земной поверхности вверх и снова затягивается несущим винтом.

При этом доля ламинарного течения воздуха на лопастях снижается, а доля турбулентного — увеличивается. В результате, на несущем лопастном агрегате возникают вибрации, а его эффективность резко снижается, причем увеличение угла установки лопастей или мощности на валу практически не дают никаких результатов. В лучшем случае вертолет, попавший в вихревое кольцо, совершает жесткую посадку.
   
Для преодоления этих явлений разработчики несущих винтов используют разнообразные конструкции, включая закручивание лопастей вдоль их оси для создания равномерной подъемной силы на всем их протяжении, установку небольших закрылков, похожих на самолетные, в задней части лопастей для более эффективного контроля над подъемной силой и каплевидную или саблевидную форму законцовок лопастей, что позволяет отсрочить возникновение флаттера и снижение эффективности лопасти при приближении ее линейной скорости к околозвуковой.

Линзообразные роторы

Участки лопастей, расположенные ближе к валу, движутся относительно воздушного потока с меньшей линейной скоростью, чем внешние участки — и потому создают меньше подъемной силы. От общей подъемной силы, создаваемой воздушным винтом, только 30 процентов приходятся на внутреннюю часть лопастей. Учитывая это, французская компания Conseil & Technique предложила пересмотреть конструкцию роторов.

Согласно предложению французских разработчиков, 70 процентов внутреннего круга несущего винта следует заменить диском. Оставшуюся часть несущего винта французы предложили выполнить в виде коротких лопастей. По предварительным расчетам, такая замена приведет к потере 30 процентов подъемной силы при взлете и посадке, однако они будут с лихвой компенсированы тем, что в горизонтальном полете на нем возникает подъемная сила — и он таким образом выполняет роль крыла.

Conseil & Technique уже испытала малоразмерные прототипы линзообразных роторов в аэродинамической трубе. По заявлению разработчиков, испытания показали, что линзообразный ротор при вертикальных взлете и посадке показал эффективность, сопоставимую с лопастным воздушным винтом, но был существенно тише. При этом на лопастях ротора не происходило срыва воздушного потока при углах атаки до 25 градусов. Для сравнения, у традиционных лопастных винтов угол атаки лопастей может изменяться от 0 до 15 градусов.

Французская компания предложила использовать линзообразные роторы в городских летательных аппаратах и подготовила эскизный проект 19-местного аэротакси с шестью роторами на выносных балках и хвостовым четырехлопастным толкающим винтом. Такое аэротакси с максимальной взлетной массой девять тонн сможет выполнять полеты на скорости до 200 километров в час на расстояние до тысячи километров.

DiscRotor

В начале 2000-х годов концерн Boeing в рамках программы по разработке скоростного винтокрылого летательного аппарата предложил концепцию несущего винта DiscRotor, который в полете выполнял бы роль крыла. Несущий винт выглядел как вращающаяся тарелка, занимающая значительную часть его плоскости, и четыре широких телескопические лопасти.

С разложенными лопастями воздушный винт выполнял роль обычного лопастного винта, обеспечивая вертикальные взлет и посадку. А при переходе в режим быстрого горизонтального полета лопасти должны были втягиваться в тарелку, уменьшая таким образом лобовое сопротивление всей конструкции. Сама тарелка останавливала свое вращение, а аппарат удерживался в воздухе уже за счет подъемной силы крыльев. Перед посадкой или при переходе к режиму висения тарелка снова раскручивалась и выдвигала из себя лопасти.

DiscRotor планировалось использовать на скоростном винтокрылом летательном аппарате, выполненном по самолетной схеме высокоплана. На крыле летательного аппарата разработчики предложили разместить два вентилятора, приводимых в движение двумя турбовальными двигателями. Последние имели традиционное для вертолетов расположение над фюзеляжем.

Трансмиссию летательного аппарата с DiscRotor планировалось сделать переключаемой. При взлете и посадке она бы передавала мощность двигателей на вал несущего винта, а после взлета постепенно уменьшала бы ее на винте (вплоть до остановки последнего) и увеличивала на вентиляторах. Согласно эскизному проекту, винтокрылый летательный аппарат с DiscRotor был бы способен выполнять полеты на скорости до 400 узлов (около 741 километра в час). Боевой радиус машины составил бы 741 километр с грузом массой до 1,1 тонны.

X-Wing

В 1970-х годах американская компания Sikorsky предложила концепцию несущего винта X-Wing, так называемого ротор-крыла. Внешне этот несущий винт похож на традиционный лопастной ротор с четырьмя лопастями. При этом сами лопасти существенно шире, чем традиционные. При взлете и при наборе скорости ротор-крыло должно было вращаться, как обычный несущий винт, а в горизонтальном полете останавливалось и выполняло роль обычного самолетного крыла.

К 1976 году компания Sikorsky построила два прототипа винтокрылых летательных аппаратов с X-Wing — S-72. Они были созданы на базе многоцелевого вертолета UH-60 Blackhawk.
   
Машины получили по два газотурбинных двигателя для приведения в движение ротор-крыла и вращения рулевого винта через редуктор, низкорасположенное крыло размахом 18,9 метра и по два турбореактивных двигателя, расположенных над ним.

В 1976 году один из прототипов совершил первый полет, правда без без ротор-крыла — конструкторы отрабатывали на S-72 аэродинамическую компоновку и различные способы управления. 

Позднее один из прототипов получил ротор-крыло. Выкатка модернизированного аппарата состоялась в 1986 году, однако в воздух он так и не поднялся. Заказчики проекта — NASA и Агентство перспективных оборонных разработок — посчитали проект слишком сложным и дорогостоящим.

Реактивный винт

Традиционно в вертолетной технике несущий винт приводится в движение двигателями с помощью трансмиссии. В 1950-х годах британская компания Percival Aircraft Company предложила иную конструкцию — реактивный несущий винт. Этот агрегат был очень похож на традиционный несущий винт и имел три лопасти. При этом винт не имел никакой связи с двигателями, его вращение обеспечивалось реактивными соплами на законцовках лопастей.

Во время работы двигателей их газовый поток направлялся в воздуховод к несущему винту, а затем выдувался через сопла на лопастях. Таким образом возникал реактивный момент, который и раскручивал несущий винт. Автомата перекоса на винте не было — угол атаки лопастей регулировался при помощи небольших элеронов.

Такой винт британские разработчики использовали в прототипе вертолета Percival P.74. Летательный аппарат получил фюзеляж каплеобразной формы со значительной округлой носовой частью и небольшой заостренной хвостовой. В хвостовой части был установлен небольшой толкающий воздушный винт, который вносил небольшой вклад в создание движущей силы и несколько стабилизировал вертолет в горизонтальном полете.

Несущий винт P.74 приводился в движение двумя газотурбинными двигателями, расположенными в подполье фюзеляжа. Газовый поток от них передавался несущему винту по воздуховоду. Хотя такая конструкция была относительно простой технически (ни трансмиссии, ни автомата перекоса), она имела существенный недостаток — воздуховоды проходили сквозь грузопассажирское отделение, из-за чего в нем было очень шумно и жарко.

В 1956 году Percival Aircraft Company собрала один летный прототип вертолета с реактивным винтом и провела его наземные испытания. Поднять в воздух машину не удалось, поскольку газотурбинные двигатели вертолета не смогли развить необходимую для взлета мощность. Разработчики пытались исправить конструкцию и даже сумели практически поднять машину в воздух, однако взлет был прерван из-за нестабильной работы двигателей и плохой управляемости.

Следует отметить, что в 1950-х годах тема реактивных роторов была очень популярна. Несколько разработчиков, включая конструкторское бюро Миля, Dornier, Focke-Wulf, Fairey Aviation Company и Sud-Ouest, создавали такие несущие винты. В частности, советское конструкторское бюро Миля предложило прототип многоцелевого вертолета В-7 с несущим винтом, на концах лопастей которого были установлены небольшие турбореактивные двигатели АИ-7.




комментарии (0):













Материалы рубрики

Екатерина Шокурова
РБК
ГЛОНАСС разработает стандарты кибербезопасности для дронов

РБК
Глава «России»: «Каждый 2-й рейс на SSJ100 — между Москвой и Петербургом»
Герман Костринский
РБК
«Россия» начала сравнивать российский и французский двигатели для SSJ-100
Алёна Алёша
Деловой Петербург
Регистрация улыбкой: Петербург узаконит биометрию в аэропортах
София Прохорчук, Ирина Ионина, Самира Сабирова
Известия
Задача на вылет: авиакомпании готовят вывозные рейсы с Ближнего Востока
Анастасия Николаева
Интерфакс
Новый космический проект: какие приоритетные направления выбрала Россия?
Ольга Ларина
Деловой Петербург
Зона турбулентности. Забастовки в Финляндии обрушили авиаперевозки
Иван Сало
РБК
Что такое Crew Dragon: история, миссия, полеты, список кораблей



Любовь Можаева
MASHNEWS
И внутри будет отечественное. Минпромторг решил потратить 4 млрд на начинку самолетов
Сергей Андрейкин
Деловой Петербург
Пулково опередил зарубежные аэропорты по внедрению биометрии
Любовь Можаева
MASHNEWS
С овальным фюзеляжем. На самолеты нового поколения Минпромторг потратит еще 13 млрд
Мария Недюк
Известия
Что указано пером: птицы помогут создать автономные системы навигации для дронов
Кирилл Фенин
Известия
Полетное создание: РФ и Сербия работают над запуском новых авиарейсов
Петр Канаев, Герман Костринский
РБК
Правкомиссия отказала крупнейшему аэропорту Камчатки в повышении тарифов
Евгений Берсенев
Свободная Пресса
Отлетались? Программа производства новых самолетов опять попала под нож
Андрей Коршунов, Юлия Леонова
Известия
Общий взлет: в РФ создали первую универсальную станцию внешнего управления дронами
Анастасия Львова
Эксперт
Дронов становится всё больше
Екатерина Шокурова
РБК
Эксперты разработали концепцию «цифрового неба России»
Мария Фролова
Известия
Лишние пассажиры: в Минтрансе предложили ввести овербукинг на частых рейсах
Ксения Власова
ИрСити
«Это чудо — потомки оценят». Авиаэксперт объяснил, полетит ли МС-21 в 2026 году на самом деле
Наталия Ячменникова
Российская газета
Медсестра, буфетчица и кладовщица: Кем были первые стюардессы в мире и России
Владимир Гаврилов
Известия
Все в сад: основой беспилотной авиации станут агродроны
Тимур Алиев (Махачкала), Гульназира Ишбердина (Уфа), Олег Корякин (Казань), Юлия Потапова (Кемерово), Мария Соловьева (Элиста), Ирина Троценко (Дальний Восток)
Российская газета
Какие новые аэропорты были открыты в городах России за последние годы. А какие были модернизированы
Ева Акимова
РБК
Познакомьтесь с первой в мире женщиной — пилотом вертолета «Ансат». Санитарная авиация в России отмечает 100 лет с момента создания
Роман Крецул, Богдан Степовой
Известия
Будет полк: в ВМФ создают морские части беспилотных систем
Анастасия Львова
Эксперт
Отстающим помогут справиться с управлением
Анна Героева
Известия
Мы будем водить самолеты: как тренируют российских пилотов
Герман Костринский, Дарья Молоткова
РБК
Минпромторг закажет разработку перспективных самолетов
Екатерина Тропова
АТОР
Отмены и задержки рейсов повлияли на планы не менее 60 тысяч пассажиров
Андрей Коршунов
Известия
Стройный скан: в России создают самую точную 3D-модель Луны и Марса
Андрей Коршунов
Известия
Задать модуль: российские аппараты могут быть первыми на Северном полюсе Луны
Анастасия Николаева
Интерфакс
Полетное задание выполнено: частично импортозамещенный МС-21 поднялся в небо
Владимир Гаврилов Станислав Федоров
Известия
Вот Хургада: AlMasria Airlines сократила полетную программу из РФ на курорты Египта
Владимир Гаврилов
Известия
Билетное па: выплаты пассажирам за овербукинг хотят сделать обязательными
Андрей Коршунов
Известия
Спрей для дела: новые российские двигатели доставят на Луну наноспутники
Михаил Захаров
Монокль
Boeing заходит на Россию
Надежда Сарапина
РИА Новости
"Расхлебывать придется годами". Китай больно щелкнул США по носу
Екатерина Хамова
Известия
Взвинченным темпом: РФ и Колумбия не договорились по ремонту Ми-17
Захар Максимов
ВГУДОК
РЖД и Аэрофлот охладеют к пассажирам
Айгуль Абдуллина, Александра Мерцалова
Коммерсант
В Сухум подлетают с вопросами
Андрей Коршунов
Известия
Внеземное притяжение: космическая обсерватория займется поиском жизни во Вселенной
Андрей Коршунов
Известия
Спутник с жизнью: мыши и мухи помогут подготовить человека к полетам на Луну и Марс
Дмитрий Литвинов
Парламентская газета
В Росавиации оценили идею доставлять товары из Китая беспилотниками
Кирилл Фенин, Алена Нефедова, Владимир Гаврилов
Известия
Подставили на крыло: в США удерживают закупленные РФ авиазапчасти на $500 млн
Ксения Власова
ИрСити
«Вполне реально завершить эту программу». Авиаэксперт оценил, сколько МС-21 получат авиакомпании в 2026 году
Дарья Молоткова, Елена Сухорукова, при участии Анна Захарова
РБК
Немецкий оператор duty free вышел из бизнеса в Шереметьево и Домодедово
Юлия Леонова
Известия
Беспилотный урок: в России начали обучать сборке БПЛА школьников и студентов
Мария Недюк, Юлия Леонова
Известия
Полетный проект: названы самые перспективные разработки беспилотных авиасистем
Дмитрий Плотников
Pravda.Ru
Проект Як-242: несостоявшийся конкурент самолётов Ту-204 и МС-21
Андрей Коршунов
Известия
Сдвиг по базе: в России создали универсальный двигатель для беспилотников

 

 

 

 

Реклама от YouDo
erid: LatgC9sMF
 
РЕКЛАМА ОБРАТНАЯ СВЯЗЬ АККРЕДИТАЦИЯ ПРЕСС-СЛУЖБ

ЭКСПОРТ НОВОСТЕЙ/RSS


© Aviation Explorer